On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2014

The demand for human normal immunoglobulin is invariably increasing on an annual basis. To satisfy increasing demands, different manufacturing processes are used to isolate immunoglobulins from human plasma. A quest for alternative paths in manufacturing not only requires development of most economical manufacturing process, but also rapid method development and development of good analytics for monitoring of manufacturing. For an efficient development of the purification methods as well as for in-process control during manufacturing stage, the uses of reliable and fast analytical techniques are crucial.
Fast and reliable fingerprint-based method for characterization of immunoglobulin G (IgG) prepared from Cohn I+II+III paste in two chromatographic steps is presented here. The fingerprint method bases on partial separation of proteins in linear gradient on CIMac™ QA 0.1 mL column. Partial separation of proteins does not allow simple quantitative analysis of the samples, however a very accurate qualitative information about the composition of the sample being analyzed can be obtained in less than 5 minutes.

Attachments

Full view

2013

Lab scale production of recombinant human monoclonal antibodies (mAbs) is required for the identification and characterization of lead clones with potential therapeutic value. For this purpose, many mAbs need to be screened. MAbs titers in this type of production scale tend to be quite low (from 0.01 – to 0.1 mg/mL), therefore a substantial amount of material needs to be processed to obtain the right amount of purified mAbs. Speed of processing and the ability to capture mAbs from diluted harvest stock are essential in this type of mAbs purification.


In this application note, a quick purification procedure using a CIM® r-Protein A-80 Tube Monolithic Column that generated up to 100 mg of mAbs with a purity of more than 95 % is described. Elution of mAbs is performed using a two-dimensional gradient (pH 7.2 to 2.5; NaCl 150 to 500 mM), allowing gentle elution of a wide range of mAbs at moderate pH (pH ~4) without any method optimization. Using this procedure, approximately 30 different mAbs were purified, processing up to 5 L of loading material (2 times diluted clarified harvest).

Attachments

Full view

2010

As the demand for plasmid DNA (pDNA) based gene therapy and vaccines increases, large scale, cost effective, and reproducible pDNA production will be required. The key to success is a real time in-process control method that ensures a high percentage of supercoiled pDNA in the final product. CIMac™ pDNA Analytical Column allows the monitoring of degradation products (open circular and linear pDNA), the removal of impurities (RNA), and ensures that each production step is yielding the amount of supercoiled pDNA anticipated.

Attachments

Full view

The demand for monoclonal antibodies is invariably increasing on an annual basis. To satisfy increasing demands, faster and cheaper ways of manufacturing are explored. A quest for alternative paths in manufacturing not only requires development of most economical manufacturing process, but also rapid method development and development of good analytics for monitoring of manufacturing. For a quickly developed process, the use of reliable and fast analytical techniques are crucial. Moreover, this analytical technique should than be preferably used also for in-process control during manufacturing stage.


Here we present fast and reliable method for processing and analyzing IgG, IgA ang IgM using CIM® QA Disk Monolithic Column, which thrive upon speed, repeatability and high capacity.

Attachments

Full view

2008

A Hemoglobin A1c reference standard was loaded on CIM® SO3 monolithic column and eluted in a mixed stepwise and linear gradient. HbA1a, HbA1b and HbA0 variants were separated and a complete determination of HbA1c (including equilibration) was obtained within 1.1 minute.

Attachments

Full view

A mixture of IgG, HSA and IgM standard was loaded on CIM® EDA Disk and eluted in linear salt gradient at a flow rate of 4 mL/min (12 CV/min). A complete separation of IgM from IgG and HSA was obtained within 1.5 minute.

Attachments

Full view

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view

Immunoaffinity columns were prepared by immobilization of Protein G on CIM® Epoxy Disk, CIM® Epoxy tube (1 mL) and an activated, particle based agarose support. A comparison of productivity was performed by loading centrifuged human plasma and resulted in superior productivity of CIM® monolithic supports.

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view

Attachments

Full view