On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2022

Robust and precise chromatographic analytical methods are key for efficient development of mRNA production process. Three different analytical methods, which utilize three different column chemistries, are embedded in a ready-to-use PATfix™ mRNA analytical platform to support mRNA process development and product quantification and characterization.

Attachments

Full view

Buffer conditions (salt, additives) influence mRNA binding on Oligo dT. Three contributing factors were identified and tested: NaCl, MgCl2 and Gu-HCl, the latter leading to a capacity of >6 mg/mL.

Affinity-based chromatographic isolation of mRNA is robust and simple, lending itself as a useful industrial platform. mRNA constructs contain a 3’ polyA tail to increase stability in vivo, thereby affording the possibility of affinity purification using oligo-deoxythymidinic acid (Oligo dT) probes covalently coupled to a solid support. Poly-adenylated mRNA forms a stable hybrid with Oligo dT under high-salt conditions which is destabilized when the salt is removed, allowing mRNA to be released.

Due to an increasing productivity of IVT reaction, finding conditions that increase binding capacity of Oligo dT has been an intense focus of development. Multi-parallel approaches, such as screening in multi-well plate format, can significantly cut the development time by screening multiple conditions at once. 96-well plates can then be scaled-up to preparative scale, such as CIMmultus™ product line operated by chromatographic skids.

Continue to products for screening

Attachments

Full view

CIMac™ pDNA Analytical Column is powerful tool for pDNA quantification for in-process control or in a QC laboratory. The column can separate pDNA isoforms from each-other and from RNA impurities. Monitoring of pDNA production leads to a controlled and robust process, and can result in consistent high quality of the final product.

Optimised methods are a key component of a well-functioning analytical system, sometimes requiring time-consuming method development and steep learning curves. The following two methods described in this quick start guide can provide a starting point for pDNA purity and isoform analysis.

Attachments

Full view

2021

Optimized analytical methods are key components of a well-functioning analytical system, while method development usually comes with a time-consuming learning curve and optimization.

PATfix pDNA analytics platform, designed for in-process control of linear pDNA production, enables monitoring of pDNA linearization progression, as shown in Figure 1. Fully optimized and validated analytical methods, as well as guidelines for buffer and sample preparation come as part of the PATfix system, allowing users to focus on their specific application. In addition, the PATfix pDNA analytical package includes a pDNA calibration standard, which enables accurate quantification of the pDNA species of interest.

Attachments

Full view

2019

A purification of synthetic oligonucleotides by using CIM™ monolith was evaluated. In this case study, the CIM™ anion exchange column had the capability to resolve oligonucleotides with small difference in comparative chain length.

A crude reaction mixture of synthetic oligonucleotide was loaded onto the CIM™ anion exchange column. Sample elution was achieved by salt concentration gradient. In comparison with conventional media, CIM™ monolith indicated higher resolution for major impurities.

Advantages of the characteristic properties of the CIM™ monolith were evaluated based on the high throughput purification of oligonucleotides under the identified gradient separation conditions. Over 99 % HPLC purity for the target oligoDNA was achieved by one-step purification from the crude reaction mixture.

Attachments

Full view

Pre-activated CIMmic™ monolithic columns are cost efficient tools for screening of immobilisation conditions and small scale proof-of-concept testing of custom affinity columns and enzymatic reactors. Each column is assembled from a dedicated housing and discs containing a chromatography medium. With a bed volume of 100 μL, sample requirements are minimal, while inserting multiple discs in the housing adapts the column volume to application requirements. Different surface modifications of the discs enable immobilisation of a wide variety of ligands.

The increasing demand for messenger RNA (mRNA) as a therapeutic product requires larger production scales, and in turn more efficient extraction techniques. One of the most convenient techniques for its extraction is the use of oligo deoxythymidine (dT) coupled to a solid support [1]. Oligo dT hybridises to the poly-adenylated tail which is present on most eukaryotic mRNAs, or synthetised onto the molecule during IVT, while other contaminant impurities (proteins, unreacted nucleotides, plasmid DNA, CAP analogues, partial transcripts, dsRNA side products and enzymes) lack the poly-A moiety and do not adhere to the solid support.

Attachments

Full view

2018

The application describes separation of Ni species by assembling four weak CIM DEAE anion-exchange disks into a monolithic column. The concentrations of the Ni species eluted from the column were quantified by post-column isotope dilution inductively coupled plasma mass spectrometry (ID)-ICP-MS. The Ni binding ligands eluted under the chromatographic peaks were identified off-line by tandem electro spray mass spectrometry (ESI-MS-MS), scanning for negative ions.
The mild chromatographic conditions of the CIM DEAE disks preserved chemical species and enabled separation of negatively charged Ni complexes.4 NH4NO3 was chosen as eluent since it enabled separation of Ni species and is compatible with ICP-MS and mass spectrometry detectors.

Attachments

Full view

2017

Sample displacement chromatography exploits the different relative binding affinities of components in a sample mixture to achieve accummulation of a desired substance on the column before elution. In pharmaceutical applications, requirements for purity and efficacy of plasmid DNA (pDNA) as a therapeutic product are stringent. The separation of linear, supercoiled (sc) and open-circular (oc) pDNA isoforms has already been established on CIM® butyl (C4 HLD) monolithic columns at preprative scale. This process requires high concentration of ammonium sulphate for loading which increases the overall production requirements. Competing adsorption in sample displacement chromatography utilises the binding capacity of the chromatographic resin more efficiently and increases productivity of the chromatographic step.
This application note investigates three monolithic chromatographic supports with different hydrophobicities regarding their applicability for sample displacement of pDNA. CIMac™ C4 HLD (butyl, high ligand density) as a commercial product and pyridine and histamine as custom immobilised columns are compared.

Attachments

Full view

2016

Plasmid DNA (pDNA) as a pharmaceutical product has stringent requirements of purity and efficacy and often one or more chromatographic steps are used in the downstream process. High ligand density butyl-modified chromatographic monolith (CIMmultus™ C4 HLD, part of CIMmultus™ HiP² Plasmid Process Pack™ 1-1, product number 100.0011-2) is currently used in a polishing step of a pDNA purification process (1), is mainly used for separation of supercoiled (sc) pDNA separation from open circular (oc) and linear pDNA isoforms as well as for removal of remaining gDNA and RNA.
This application note presents a comparison of two different polishing processes employing monoliths, namely bind-elute (BE) and the more recently described (2) sample displacement purification (SDP).

Attachments

Full view

2014

DNA immunization can potentially induce both, humoral and cellular immune responses, and thus comprises an attractive approach for the development of an effective vaccine against HCV. The pIDKE2 plasmid is the main component of the CIGB's candidate vaccine against Hepatitis C virus (HVC), which is being used in HCV chronically-infected individuals during clinical trials phase 1 and 2.


In order to satisfy the high demanding plasmids consumption for clinical trials, the downstream process was improved to reach the quantities need it for clinical trials.

Attachments

Full view

2010

As the demand for plasmid DNA (pDNA) based gene therapy and vaccines increases, large scale, cost effective, and reproducible pDNA production will be required. The key to success is a real time in-process control method that ensures a high percentage of supercoiled pDNA in the final product. CIMac™ pDNA Analytical Column allows the monitoring of degradation products (open circular and linear pDNA), the removal of impurities (RNA), and ensures that each production step is yielding the amount of supercoiled pDNA anticipated.

Attachments

Full view

2008

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view

Attachments

Full view