On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2022

Robust and precise chromatographic analytical methods are key for efficient development of mRNA production process. Three different analytical methods, which utilize three different column chemistries, are embedded in a ready-to-use PATfix™ mRNA analytical platform to support mRNA process development and product quantification and characterization.

Attachments

Full view

Affinity-based chromatographic isolation of mRNA is robust and simple, lending itself as a useful industrial platform. mRNA constructs contain a 3’ polyA tail to increase stability in vivo, thereby affording the possibility of affinity purification using oligo-deoxythymidinic acid (Oligo dT) probes covalently coupled to a solid support. Poly-adenylated mRNA forms a stable hybrid with Oligo dT under high-salt conditions which is destabilized when the salt is removed, allowing mRNA to be released.

Due to an increasing productivity of IVT reaction, finding conditions that increase binding capacity of Oligo dT has been an intense focus of development. Multi-parallel approaches, such as screening in 96-well plate format, can significantly cut the development time by screening multiple conditions at once. 96-well plates can then be scaled-up to preparative scale, such as CIMmultus™ product line operated by chromatographic skids.

Attachments

Full view

2021

Optimized analytical methods are key components of a well-functioning analytical system, while method development usually comes with a time-consuming learning curve and optimization.

PATfix pDNA analytics platform, designed for in-process control of linear pDNA production, enables monitoring of pDNA linearization progression, as shown in Figure 1. Fully optimized and validated analytical methods, as well as guidelines for buffer and sample preparation come as part of the PATfix system, allowing users to focus on their specific application. In addition, the PATfix pDNA analytical package includes a pDNA calibration standard, which enables accurate quantification of the pDNA species of interest.

Attachments

Full view

2019

A purification of synthetic oligonucleotides by using CIM™ monolith was evaluated. In this case study, the CIM™ anion exchange column had the capability to resolve oligonucleotides with small difference in comparative chain length.

A crude reaction mixture of synthetic oligonucleotide was loaded onto the CIM™ anion exchange column. Sample elution was achieved by salt concentration gradient. In comparison with conventional media, CIM™ monolith indicated higher resolution for major impurities.

Advantages of the characteristic properties of the CIM™ monolith were evaluated based on the high throughput purification of oligonucleotides under the identified gradient separation conditions. Over 99 % HPLC purity for the target oligoDNA was achieved by one-step purification from the crude reaction mixture.

Attachments

Full view

Pre-activated CIMmic™ monolithic columns are cost efficient tools for screening of immobilisation conditions and small scale proof-of-concept testing of custom affinity columns and enzymatic reactors. Each column is assembled from a dedicated housing and discs containing a chromatography medium. With a bed volume of 100 μL, sample requirements are minimal, while inserting multiple discs in the housing adapts the column volume to application requirements. Different surface modifications of the discs enable immobilisation of a wide variety of ligands.

The increasing demand for messenger RNA (mRNA) as a therapeutic product requires larger production scales, and in turn more efficient extraction techniques. One of the most convenient techniques for its extraction is the use of oligo deoxythymidine (dT) coupled to a solid support [1]. Oligo dT hybridises to the poly-adenylated tail which is present on most eukaryotic mRNAs, or synthetised onto the molecule during IVT, while other contaminant impurities (proteins, unreacted nucleotides, plasmid DNA, CAP analogues, partial transcripts, dsRNA side products and enzymes) lack the poly-A moiety and do not adhere to the solid support.

Attachments

Full view

2011

Filamentous phage M13 is a rod shaped non-lytic bacterial virus. M13 genetic material is used for many recombinant DNA processes, and the virus has also been studied for its uses in nanostructures and nanotechnology. The phage has been intensively studied for purposes of phage display and as a delivery vehicle for gene therapy. Phage display was first demonstrated with M13 bacteriophages and the filamentous phage remains a workhorse for this technology. Because of its typical size and rod shape it is considered as a challenging for purification. With large and highly interconnected pores monolithic chromatographic supports are also bridging that problem.


The ability to improve the purification process of M13 and other phages can have a significant impact on the market. By using phages for gene therapy, there will be a decrease in manufacturing time and production costs while enhancing the gene insertion. For phage display, a quicker method for phage purification will allow this powerful tool, which shortens the new drug discovery path and illuminates the basic interactions between different proteins, to be used with higher frequency.

Attachments

Full view

2010

Bacteriophages are used in a broad range of applications, including phage therapy and phage display. With the growing problem of antibiotic resistance leading to untreatable bacterial infections, they are becoming very interesting as antimicrobial agents, not only in medicine, but also in veterinary medicine, food industry and agriculture. Phages intended for use as antimicrobial agents, especially those for human use, need to be purified of contaminants.


Here we present efficient single step purification method for a Staphylococcus aureus phage VDX-10 from bacterial lysate on a CIM® QA Disk Monolithic Column (Figure 1). The described method can be used also on a larger scale using a CIM® QA-8 mL Tube Monolithic Column (Figure 2).

Attachments

Full view

Bacteriophages, viruses that infect bacteria, are being used as antibacterial agents, in phage display screening, as gene therapy delivery systems, and for bacteria typing. To use phages in these applications, they must be free of all impurities. A purification and concentration process was recently developed using an ion exchange monolithic column [1]. One of the key challenges faced in phage purification is the monitoring of genomic DNA (gDNA) released to the growth medium which can interfere with the various applications of phages. CIMac™ DEAE Analytical Columns can be used to monitor the fermentation process, evaluate the amount of degraded gDNA to determine the optimal fermentation endpoint and then to efficiently purify the phage particles.

Attachments

Full view

2008

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view