Virus purification strategies using chromatographic methods have been proven to be one of few choices when high purity and good product recovery is required. CIMmultus chromatographic offer scalable, fast and economically favorable purification processes with selection of chemistries and channel sizes to meet the needs for various virus particles.

virusesDynamic binding capacities on monoliths range from 10 to 100 times higher than porous particle columns, and 2-10 times higher than membrane adsorbers, plus virus recoveries on monoliths are often twice as high as alternative media. Add to that flow rates 20–50 times higher than porous particle columns and it becomes clear why monoliths are so popular for virus purification.

Process development can be done on 100 µL monoliths to conserve sample, and developed applications can be scaled up with monoliths up to 40 L. Those volumes may seem small but keep in mind that they represent the capacity as packed columns with volumes of 10 mL and 4,000 L respectively. Keep in mind too that column volume determines buffer volume, and buffer volume determines process time. The high capacity of monoliths is a huge asset for your virus purification challenges.

BIA monoliths for virus purification include a full line of activated affinity supports, anion exchangers, cation exchangers, hydrogen bonding and hydrophobic interaction chromatography media.

BIA’s monoliths are well established throughout the fields of gene therapy, vaccines, and bacteriophage purification. In addition to providing monoliths, BIA offers expert fully-integrated process development services, including both purification and analytics. We have developed a high-recovery non-affinity platform for many AAV that provides outstanding separation of empty and full capsids for every serotype evaluated to date, and extensive experience with influenza, including oncolytic vaccines.

Influenza B purification.
One-Step Influenza B purification chromatogram. Virus elutes at the beginning of the
salt gradient under neutral pH conditions.

Most often used